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Premise of research. The disjunct distribution of plant genera between eastern Asia (EA) and eastern North
America (ENA) has long attracted the attention of biologists and biogeographers. For most genera that have been
studied, there are more species in EA than in ENA, and the diversity anomaly may have resulted from the greater
physiographical heterogeneity in EA than in ENA in conjunctionwith climate and sea level changes.However, few
empirical studies have explicitly tested the association between species diversity and allopatric speciation events.
The genus Stewartia (Theaceae) displays this diversity anomaly, with two species in ENAand 21 species in EA, but
the phylogeny of this group has not been resolved because of insufficient data.

Methodology. Here, we sampled 15 species of Stewartia (65%) and generated data fromover 500 nuclear loci
using the anchored phylogenomic approach to produce a robust phylogeny of Stewartia. In addition, biogeo-
graphical analyses were performed to elucidate the natural history of Stewartia, including estimated times of di-
vergence, ancestral areas, and speciation patterns.

Pivotal results. Our parsimony, Bayesian, and species tree analyses produced congruent phylogenieswith high
resolution of the interspecific relationships within Stewartia. Speciation in Asia was mostly allopatric between the
Japanese Islands and the Asian continent during the Miocene and the early Pliocene, while the two ENA species
represent lineages from different times, with S. malacodendron being the first lineage to split off from the re-
maining species and S. ovata coming later as sister to the deciduous species of Asian Stewartia.

Conclusions. The results provide direct evidence for the importance of allopatry in the differential diver-
sity between EA and ENA.
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Introduction

Intercontinental disjunction of plants represents one of the
most important geographic patterns of biodiversity and has
been studied extensively in terms of phylogenetic relationships,
diversification patterns, and how and when the disjunction was
formed (Thorne 1972; Raven and Axelrod 1974; Wen 1999;
Milne 2006; Li et al. 2014b, 2018). Such studies have enriched
theories and practices in multiple disciplines such as biogeogra-
phy, ecology, and evolutionary biology (Hong 1993; Donoghue
and Smith 2004; Xiang et al. 2004). Eastern Asia (EA) and east-
ern North America (ENA) are similar in climate and vegetation

types (Qian et al. 2017) and share numerous disjunct lineages
at various taxonomic levels. At the generic level, over 65 plant
genera show disjunct distribution between the two continents
(Li 1952; Boufford and Spongberg 1983; Wu 1983; Wen 1999).
Nevertheless, taxonomic studies of the disjunct genera have con-
cluded that the number of species in EA is almost twice that in
ENA (Li 1952; Hong 1993), a diversity anomaly between two
regions with similar environmental conditions that have differ-
ent species richness (Xiang et al. 2004). Various factors have
been proposed to explain the diversity anomaly between EA and
ENA: (1) uninterrupted connection with a tropical region in EA
(Sargent 1913), (2) lack of glaciation in China proper (Hu 1935),
(3) greater topographic and ecological heterogeneity (Sargent 1913;
Li 1952; Axelrod et al. 1998; Qian and Ricklefs 2000; Qian 2002),
(4) longer evolutionary time (Donoghue and Smith 2004), and
(5) faster rate of molecular evolution (Xiang et al. 2004). Though
these factors may have acted alone or in combination to affect the
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diversification (speciationminus extinction) of lineages in EA and
ENA, Qian and Ricklefs (2000) suggested that the higher num-
ber of species inEAmight be associatedwith the greater allopatric
speciation created by the isolation of populations between the
Asian mainland and the Japanese Islands during the glacial and
interglacial cycles and by populations adapting to different cli-
matic zones. Phylogeographic studies of species spanning theAsian
mainland and the Pacific Islands support the genetic differentia-
tion of populations between the islands and the mainland (Qiu
et al. 2009, 2011). Nevertheless, empirical evidence has rarely
been used to evaluate the relative significance of the allopatric
speciation and climatic adaptation hypotheses (Qian and Rick-
lefs 2000). In this study, therefore, we aimed at testing this hy-
pothesis using the plant genus Stewartia L. not only because it
hasmore species in EA than in ENAbut also because it is distrib-
uted across a variety of different climatic zones in both continen-
tal Asia and the Japanese Islands.

Species of Stewartia are small to large trees (Spongberg 1974)
with showy white flowers, and some are popular landscape

ornamentals in the temperate regions of Eurasia and North
America (Dirr 1998). Li (1996) recognized 23 species in Stew-
artia sensu lato (Hartia Dunn included), of which two are dis-
tributed in ENA: S. ovata (Cav.) Weatherby in the mountains of
Alabama,Georgia,NorthCarolina, SouthCarolina, Tennessee,
and Kentucky, and S. malacodendron L. in the piedmont of Ala-
bama,Louisiana,Texas,Arkansas,Georgia, Florida,NorthCaro-
lina, and South Carolina (fig. 1). The two ENA species differ in
bracteole number and in style, leaf, and seed wing morphology
(Spongberg 1974). Eight to 21 species of Stewartia have been
recognized in EA, depending on (1) the number of species recog-
nized within the S. sinensis Rehder & Wilson complex in China
(Spongberg 1974; Min and Bartholomew 2007) and (2) whether
species of Hartia are included in Stewartia (Ye 1982; Li 1996).
Three species of Stewartia are native to the Japanese Islands:
S. monadelpha Siebold & Zucc., S. pseudocamellia Maxim.,
and S. serrata Maxim. Stewartia koreana Nakai ex Rehder is
endemic to the Korean peninsula and differs from S. pseudo-
camellia in Japan in leaf and flower morphology and fall color

Fig. 1 Geographic distribution of species of Stewartia and Hartia based on specimen information downloaded from the Global Biodiversity
Information Facility (http://www.gbif.org).
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(Rehder 1926). In China, S. rubiginosaH. T. Chang is endemic
to southern Hunan and northern Guangdong, while S. rostrata
Spongberg is distributed in Jiangxi, Hunan, and Zhejiang.
Stewartia sinensis Rehder & E. H. Wilson is widespread in cen-
tral, northern, and southern China, and its variants have some-
times been recognized as separate species, forming a taxonomi-
cally controversial species complex (see Li et al. 2002 and
references therein).

Li (1996) recognized 14 evergreen species of Stewartia in South-
east Asia. These species have naked buds (vs. deciduous species
of Stewartiawith bud scales) and have been recognized as a sep-
arate genus,Hartia (Ye 1982).Hartia has been divided into two
morphological groups: one with solitary flowers and the other
with flowers forming a racemose inflorescence (Ye 1982). Re-
cent molecular studies support the derivation of Hartia from
within Stewartia (Li et al. 2013a; Lin et al. 2019) and the tax-
onomic fusion of Hartia and Stewartia (Li 1996). Based on this
evidence, the number of species of Stewartia in EA is over 10 times
that in ENA when Hartia is included in the genus (Li 1996)
and at least four times that in ENA if only deciduous species
are considered (Spongberg 1974; Li et al. 2002; Min and Bar-
tholomew 2007). In this study, we treat “Hartia” as a clade of
Stewartia.

If allopatric speciation has played a role in generating species
of Stewartia in EA, as implied by Qian and Ricklefs (2000), we
would expect a sister relationship for each island species with
its respective mainland species. Similarly, if climatic disparities
have selected adaptive lineages of Stewartia, it can be hypothe-
sized that the species limited to climatic zones are closely related
and share common ancestry, reflecting phylogenetic niche con-
servatism (Donoghue 2008). Alternatively, if sister lineages have
experienced adaptations to different climatic zones, this would
suggest phylogenetic overdispersion.

A well-resolved species phylogeny is essential for testing the
abovementioned hypotheses, but neither nuclear internal tran-
scribed spacers (Li et al. 2002) nor plastid genes (Li et al. 2013a)
have resolved the phylogenetic relationships of the Asian spe-
cies of Stewartia. Massive amounts of DNA sequence data have
been shown to be informative in resolving relationships among
closely related species and rapidly diversifying lineages (Pyron
et al. 2014; Prum et al. 2015; Mitchell et al. 2017). The tech-
nique of anchored phylogenomics, which gathers data from hun-
dreds of loci (Lemmon et al. 2012), has been used successfully
in systematic studies of flowering plants (Buddenhagen et al. 2016;
Mitchell et al. 2017). In this study, we generated large amounts
of DNA sequence data via anchored phylogenomics (Lemmon
et al. 2012), resolved relationships among species of Stewartia,
and explored the implications of this robust phylogeny in rela-
tion to the role that allopatric speciation and climatic adapta-
tion play in generating the diversity patterns of disjunct genera be-
tween EA and ENA.

Material and Methods

Samples

Sixty-one samples were included in this study (app. A), repre-
senting the morphological and geographic diversity of Stewartia
(seven out of nine species) and “Hartia” (eight out of 14 species)

and outgroupsGordonia lasianthus (L.) Ellis, Franklinia alatamaha
Bartr. ex Marshall, and Schima (Li et al. 2013a). Whenever pos-
sible, multiple samples were used to account for intraspecific var-
iation and the potential existence of incomplete lineage sorting of
the nuclear loci used in the study.

Molecular Techniques

We followed Cardillio et al. (2017), Fragoso-Martinez et al.
(2017), Mitchell et al. (2017), and Léveillé-Bourret et al. (2018),
who targeted~500anchoredhybrid enrichment loci using aprobe
kit developed by Buddenhagen et al. (2016). Briefly, genomic
DNA was extracted from silica gel–dried leaves or fresh leaves
using a DNeasy plant mini kit following the manufacturer’s in-
structions (Qiagen, Valencia, CA). After quantifying DNA con-
centrations using Qubit fluorometric quantitation, libraries were
prepared and enriched at the Florida StateUniversity (FSU)Cen-
ter for Anchored Phylogenomics (Tallahassee, FL; http://www
.anchoredphylogeny.com) following the methods of Lemmon
et al. (2012) and Prum et al. (2015). Library preparation in-
volved sonicating DNA to 200–800-bp fragments using a Co-
varis E220 focused-ultrasonicator (Woburn, MA) and ligating
adapters (with 8-bp indexes) using a Beckman-Coulter Biomek
FXP liquid-handling robot (Indianapolis, IN). Library pools con-
taining approximately 16 samples each were then enriched for the
anchor regions using the Agilent Angiosperm version 1 kit de-
scribed in Buddenhagen et al. (2016). Enriched libraries were
sequenced on two paired-end 150-bp sequencing lanes on an
IlluminaHiSeq2500 at the FSU Translational Science Laboratory.

Data Analysis

After sequencing, reads passing the CASAVA high-chastity
filter were demultiplexed then merged following Rokyta et al.
(2012). Theprocess employed also removed sequencing adapters.
The quasi–denovo assembler described byHamilton et al. (2016)
was then used to assemble reads to Arabidopsis, Billbergia, and
Carex reference sequences derived from the alignments used for
probed design by Buddenhagen et al. (2016). In order to avoid
the effects of possible contamination and/or misindexing, as-
sembled contigs derived from fewer than 24 reads were removed
from further analysis. Pairwise distances were then used to es-
tablish the orthology of homologous contigs passing this filter,
as described in Hamilton et al. (2016). After aligning sets of
orthologous sequences using MAFFT (ver. 7.023b; Katoh and
Standley 2013), alignments were trimmed and masked with
MINGOODSITESp14, MINPROPSAMEp0.4, and MISSING-
ALLOWEDp67 (see Hamilton et al. 2016 for details). Mis-
aligned regions identified upon inspection in Geneious R9 (Bio-
matters; Kearse et al. 2012) were masked.

Phylogenetic treeswere constructed based on the concatenated
data sets of all loci using the SVDquartets method (Chifman and
Kubatko 2014), as implemented in PAUP* (Swofford 2002) on
theCIPRESScienceGatewaywith 100bootstrap replicates (Miller
et al. 2010). Partitions of our data set were assessed, and their
optimal models of evolution were selected using PartitionFinder
(Frandsen et al. 2015). However, we did not partition our data by
codon position because identifying coding regions and codon po-
sitions is difficult for this type of data (Mitchell et al. 2017). For
Bayesian tree inference, twoMarkov chainMonte Carlo (MCMC)
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runs with four chains eachwere done for 10million generations
usingMrBayes, as implemented on the CIPRES Science Gateway,
and trees were sampled every 10,000 generations. We plotted the
generations and posterior likelihood scores to ensure that the
Bayesian runs had enough generations for the likelihood scores
to reach the stationarity. The first 25% of generations were dis-
carded as burn-ins. The majority consensus of the remaining trees
was generated to show posterior probability support for individ-
ual clades. Species trees were inferred without concatenation of
the loci using the Accurate Species Tree Algorithm (ASTRAL-II;
ver. 4.9.7; Mirarab and Warnow 2015; default parameters) un-
der the coalescent model and multilocus bootstrapping of 200 rep-
licates from the RAxML-estimated gene trees (Feng et al. 2017).
The locus-specific gene trees were estimated using RAxML ver-
sion 8.1.21 (Stamatakis 2014) with GTRGAMMAmodel with
default run settings, and branch support values were estimated
using 100 bootstrap replicates.

Molecular Dating

After reviewing fossils assigned to Theaceae, Grote andDilcher
(1989)concluded that the familyexistedwithsomediversityby the
Late Cretaceous. The oldest reliable fossils of Gordonia and
Polyspora have been found in the Eocene of Europe and North
America (Grote and Dilcher 1992). Grote and Dilcher (1992) de-
scribed Gordonia lamkinensis and Gordonia warmanensis from
the Middle Eocene of the Claiborne Formation in Kentucky and
Tennessee, which ranges from 37.8 to 47.8 Ma (Walker et al.
2012).Weused themiddleEocene (ca.40.4Ma)as theminimaldi-
vergence age of the tribes Gordonieae and Stewartieae, as in Li
et al. (2013a). Fruits of Schimawere recently reported from the
Nanlin Formation in Longchuan Basin, Yunnan, China, suggest-
ing the minimum divergence time of Franklinia and Schima in the
early to middle Miocene (ca. 17.3 Ma; Li et al. 2013b). Although
fossil leaves, fruits, and seeds of “Hartia” (Mai 1975) and Stewartia
(van der Burgh 1978) have been reported from the late Tertiary
of Europe and Asia, none of them can be confidently identified
as closely related to an extant species (Grote and Dilcher 1989).
Therefore, we did not attempt to use the fossils as calibration
points. Our geological timescales followed Walker et al. (2012).

Both semiparametric and parametric methods (Sanderson
2002; Drummond et al. 2016) have been widely used to esti-
mate the time of divergence of lineages. Here, we used the r8s-PL
(penalized likelihood) method (Sanderson 2002, 2003) to esti-
mate the times of divergence of lineages within Stewartia using
100 Bayesian trees and the smoothing factor determined via cross
evaluation (Sanderson 2006). The minimum age of Gordonieae
and Stewartieae was set at 40.4 Ma and that of Franklinia and
Schima at 17.3 Ma. For parametric estimates of divergence times
using the computer package BEAST (Drummond et al. 2016),
we reduced the original data set by including a single sample
for individual populations of each species and limiting the num-
ber of sites to about 50,000. The informativeness of each parti-
tion, as defined by the PartitionFinder, was evaluated and ranked
in PhyDesign (Lopez-Giraldez and Townsend 2011). The top
25 partitions were used in BEAST for the dating exercises. The
age priors for Gordonieae-Stewartieae and Franklinia-Schima
were set at an exponential distribution with an offset of 40.4
and 17.3 Ma, respectively, and a mean of 1.0. Sites were set up
with the substitution model GTRGAMMA1I with four gamma

categories and estimated base frequencies. Both Yule and birth-
death speciation processes were used as tree prior models, with
one of the Bayesian trees as the initial tree. Operator mix was set
to fixed tree topology with tree estimates including subtreeSlide,
narrowExchange, wideExchange, wilsonBalding, and subtree-
Leap deselected. For the BEAST analysis, we set the length of the
MCMC to 200 million generations with parameters sampled
every 1000 generations to make sure that the effective sample size
was over 200, as determined by Tracer (Drummond et al. 2016).
The first 25% of the trees were discarded as burn-ins. The re-
maining trees were summarized and annotated with posterior
probabilities and with highest posterior density node heights and
rates using TreeAnnotator in BEAST (ver. 1.8.4; Drummond et al.
2016).

Biogeographic Analysis

Because Stewartia shows a disjunct distribution between EA
and ENA and the focus of the study was on the diversification
of the island lineages, we included three areas of endemism in
the biogeographic analysis: continental Asia, the Japanese archi-
pelago, and ENA. In order to infer the ancestral area of the three
Japanese species, we used both statistical dispersal and vicari-
ance analysis (S-DIVA; Yu et al. 2010) and dispersal and extinc-
tion cladogenesis (DEC; Ree and Smith 2008) analysis, as
implemented in RASP (Yu et al. 2015). S-DIVA penalizes dis-
persal and extinction and takes into account the uncertainty of
phylogenies, while the DEC method infers the likelihood of an-
cestral areas by incorporating models of range changes and
branch lengths of the phylogeny (Ree and Smith 2008). For S-
DIVA, we conducted the analysis using 100 trees randomly se-
lected from the Bayesian trees. The maximum credibility tree
produced from a sample of trees in BEAST was used for the
DEC analysis, wherein we assumed an equal probability of mi-
gration across the three areas of endemism in all periods of geo-
logical times because of the lack of information about the dis-
persal potential of seeds and fruits of Stewartia and the impact
of the formation of the Sea of Japan during the early Miocene
on the dispersal of Stewartia. Matzke (2014) proposed a DEC1J
model to infer biogeographic history, introducing the J param-
eter for “founder event” or “jump dispersal” speciation, which
creates a new colonization without the existence of a widespread
ancestor. However, concerns about the validity of the DEC1J
model have been raised (Ree and Sanmartín 2018), and the model
was not used in this study.

Results

Sequence Data and Phylogenetic Relationships
within Stewartia

Several samples were sequenced twice to ensure the accuracy
of the data generated, and the sequence data were deposited in
the Dryad Digital Repository (https://doi.org/10.5061/dryad
.n4gt2qv; Li et al. 2019). Our sequencing targeted 500 nuclear
loci and produced data from 532 orthologous loci including the
flanking regions of some target loci. The concatenated data set
contained 386,131 aligned nucleotide sites, with missing data
ranging from 2% to 76% (meanp 20%). Repeated sequencing
of the same samples produced identical results. ParitionFinder
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recognized 206 partitions in the data set. Both SVDquartets
analysis of the concatenated data set and Bayesian analyses of
206 partitions identified by the PartitionFinder produced con-
gruent and well-supported phylogenetic trees (fig. 2). The trees

are congruent with the species tree (fig. B3; figs. B1–B3 are avail-
able online) generated with ASTRAL under the coalescent model.
When Gordonia, Franklinia, and Schima were used as outgroups
to root the trees, Stewartia malacodendron was sister to the

Fig. 2 Phylogeny of Stewartia generated from maximum parsimony and Bayesian analyses. Numbers at the nodes represent bootstrap
percentages and posterior probabilities. Highlighted letters A and B represent nodes with fossil dates used for calibration. Letters C–H indicate nodes,
with estimated times of divergence in parentheses. Japanese island species diverged from the mainland ancestral populations by the early Pliocene.
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clade containing the remaining species of Stewartia. Species of
“Hartia” formed a clade and were derived fromwithin Stewartia.
Stewartia ovata was sister to the remaining deciduous Asian
species of Stewartia. The deciduous Asian species of Stewartia
formed a grade in the order of S. pseudocamellia1 S. koreana,
S. rostrata1 S. serrata, S. rubiginosa, S. gemmata1 S. sinensis,
and S. monadelpha. Each of the three Japanese species of Stew-
artia formed a sister relationship with a continental species
or lineage: S. pseudocamellia with S. koreana, S. serrata with
S. rostrata, and S. monadelpha with S. gemmata.

Biogeographic Patterns and Divergence Time Estimates

Biogeographic analyses using both S-DIVA and DEC algo-
rithms as implemented inRASP inferred that theAsian continent
was the ancestral area of all three Japanese species and that three
vicariance events resulted in the allopatric speciation of the Jap-
anese lineages (fig. 3).

The cross evaluation of smoothing factors from 1 to 20 with
an interval of 0.5 based on one of the Bayesian trees suggested
that the optimal smoothing value for the data set was 1. When
the smoothing value and 100 Bayesian trees were used in r8s
analyses, our estimated times of divergence of lineages of Stew-
artia ranged from 4.13 to 14.19 Ma (table B1, available online).
Specifically, the disjunction between North America and eastern
Asia was formed at 11.41Ma (10.91–11.97Ma, SD p 0:2 Ma),
and the evergreen “Hartia” evolved at 12.75 Ma (12.22–
13.25 Ma, SD p 0:22 Ma). Stewartia serrata and S. rostrata
diverged by the middle Pliocene at 6.95 Ma (6.47–7.47 Ma,
SD p 0:16 Ma), S. monadelpha and S. gemmata at 5.49 Ma
(5.2–5.88 Ma, SD p 0:14 Ma), and S. pseudocamellia and
S. koreana at 4.13 Ma (3.86–4.4 Ma, SD p 0:12 Ma).

Dating using BEAST with Yule and birth-death tree models
produced age estimates with a wide range of variation for EA-
ENA disjunction and the three species pairs between the Japanese
Islands and the Asian continent (table B1). Stewartia ovata di-
verged from the Asian species at 22.59 Ma (13.58–32.58 Ma;
Yule) and 22.41Ma (13.24–32.41Ma; birth-deathmodel), while
S. rostrata and S. serrata, S. gemmata and S. monadelpha, and
S. pseudocamellia and S. koreana were separated at 10.63 Ma
(4.37–17.7 Ma) and 10.46 Ma (4.26–18.09 Ma), 9.1 Ma (4.83–
14.59 Ma) and 9.09 Ma (4.18–15.26 Ma), and 6.07 Ma (1.06–
15.77 Ma) and 6.11 Ma (1.23–14.42 Ma), respectively (figs. B1,
B2, table B1)

Discussion

The diversity anomaly between EA and ENA has been noted
in the 1900s (Li 1952; Hong 1993; Wen 1999) and quantita-
tively confirmed in the 2000s (Qian and Ricklefs 2000; Qian
et al. 2017). The “out of Asia” hypothesis (Donoghue and Smith
2004) suggests that the anomaly may have resulted from more
ancient ages for the Asian lineages to diversify in EA than in
ENA. The higher diversity in EA may also be associated with
the higher genetic diversity (Xiang et al. 2004) and/or the local
origin of the EA endemic species (Harris et al. 2013), partially
due to the greater physical heterogeneity of the region (Qian
andRicklefs 1999). The allopatric speciation between the Pacific

Islands and the Asian continent may have contributed to the
higher diversification of species in EA than in ENA (Qian and
Ricklefs 2000). Robust phylogenies of the EA-ENA disjunct
genera are needed for testing the allopatry hypothesis.
The ancestral populations of Stewartiawere inferred to have a

widespread distribution in EA and in ENA (fig. 3). Stewartia
malacodendron is the first lineage of the genus, while S. ovata
represents one of the more recent lineages and is more closely
related to the Asian species of Stewartia. Thus, the two North
American species evolved at different times. Also, S. ovata occurs
in mountains and adjacent piedmont with higher elevation and
drier conditions, while S. malacodendron is native to the coastal
plain and piedmont of lower elevation (Spongberg and Ford-
ham 1975). Geographically, S. ovata is distributed in slightly
higher latitude (357N) than S. malacodendron (327N; fig. 1B).
Therefore, the two North American species arose at different
times with distinctive ecology and morphology.
In EA, the Japanese island species are derived from the ances-

tral populations in the Asian continent (fig. 3). In two of the
three cases, however, the island species occur in slightly higher
latitudes than the continental sister species; the average lati-
tudes for S. monadelpha and S. serrata are 34.87 and 357N, re-
spectively, whereas those of S. gemmata of eastern and southern
China and S. rostrata are 28.57 and 297N, respectively. Never-
theless, the ecological conditions of the Japanese Islands and the
Asian continental species of Stewartia are similar, with warm,
temperate, moist conditions (Qian and Ricklefs 2000). There-
fore, adaptations to different climates may not have played an
important role in the diversification of species of Stewartia in
EA or in ENA. Hartia occurs in warmer regions of the Asian
continent (fig. 1), but it does not form a sister relationship with
any of the other Asian species of Stewartia in the northern lati-
tudes (fig. 3). Thus, climatic zoning in Asia does not seem to
have had an evident impact on the diversification of lineages
of Stewartia. In contrast, the geographic barriers and connec-
tions associated with the formation of the Sea of Japan and
the glacial/interglacial cycles may have been more important
in the generation of greater species diversity in EA than in ENA.
Geological studies have shown that the Sea of Japan was

formed in the early Miocene (18–32 Ma; Tamaki et al. 1992),
and the last land connections between the Japanese Islands and
the Asian continent were severed in the late Pliocene because
of the glacial lowering of sea levels (Haq et al. 1987; Maruyama
et al. 1997). The estimated times of divergence using r8s and
BEASTaredifferent,with the formerbeingmore recent (see above),
which seems to be consistent with other studies (Nie et al. 2008),
as well as with simulation studies (Ho et al. 2005). Nevertheless,
the estimates are generally within the range of previous age
estimates and fossil dates. For example, a fossil species ofHartia
was reported from the Upper Miocene of western Europe (Mai
1975), which agrees with our estimated divergence of “Hartia”
at 12.75 Ma (PL) and 16.76–37.8 Ma (BEAST; figs. 2, 3). The
disjunction between S. ovata andAsian species of Stewartia is es-
timated to have formed at 11.41Ma (PL) and 13.58–32.58Ma,
which is similar to Li et al.’s (2013a) estimate of 11.3–29.1 Ma.
Li et al. (2013a) did not estimate times of divergence among
the Asian species of Stewartia because of the poor resolution of
interspecific relationships. However, our estimates from r8s and
BEAST dating exercises overlap and suggest that the Japanese
species diverged from the continental ancestral populations
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before the late Pliocene, the most recent time when the two areas
were connected via land bridges (Maruyama et al. 1997; Kameda
and Kato 2011). Therefore, our phylogenetic and biogeographic
analyses recognize that allopatric speciation due to the formation
of the Sea of Japan was probably the most important contribut-
ing factor to the greater diversification of Stewartia in Asia, while
greater climatic disparity seems to have contributed little to the
diversity anomaly between EA and ENA. This is consistent with

Qian and Ricklefs (2000) and the sister relationship of the Japa-
nese species with mainland species in several other EA-ENA dis-
junct lineages such as Torreya (Li et al. 2001), Tsuga (Havill et al.
2008), Pieris (Li et al. 2009), andWisteria (Li et al. 2014a). How-
ever, many EA-ENA disjunct lineages with species on the Japa-
nese Islands and the Asian continent need to be evaluated with
better phylogenetic resolution and comprehensive taxon sam-
pling to further test the hypothesis that there is significantly more

Fig. 3 Inferred ancestral areas of lineages in Stewartia from biogeographic analyses using statistical dispersal and vicariance analysis (S-DIVA)
and dispersal and extinction cladogenesis (DEC) methods. Lineages on the Japanese Islands evolved from ancestral populations in the Asian con-
tinent after the formation of the sea barrier separating the islands. The three areas of endemism are eastern North America (A), Asian continent
(B), and Japanese Islands (C). The vertical, wide gray bar indicates the time of formation of the Sea of Japan, 18–32 Ma.
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allopatric speciation in EA than in ENA. It is worth noting that
in the clade of S. gemmata, S. monadelpha, and S. sinensis, our
DEC analysis suggests the possibility of S. monadelpha going
back to the Asian continent from the Japanese Islands (fig. 3). In-
terestingly, a report of the introgression of plastid genes between
the continental and the island species of Stewartia (Lin et al. 2019)
appears to be consistent with our DEC results. Thus, a more com-
prehensive sampling at the population levels of all the species
with molecular data from nuclear and plastid genomes will be
important for gaining a better understanding of plant speciation
in eastern Asia.
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Appendix A

Accession, Collection Location, and Voucher Specimen of Species and Samples Used in the Study

AA: Arnold Arboretum; SYSU: Sunyatsen University; HCHM: Hope College.
Franklinia alatamahaMarshall, 4822, 2428-2A (AA), cultivated, USA;Gordonia lasianthus (L.) E. Ellis, 4191,NorthCarolina, USA,

Li 4191 (AA); Stewartia cordifolia (Li) J. Li etMing, 4564,Guangxi, China, FanQ. 8181 (SYSU); Stewartia crassifolia (S.Z.Yan) J. Li et
Ming, 3483, Guangdong, China, Li 3483 (HCHM); Stewartia laotica (Gagnep.) J. Li et Ming, 4812,Yunnan, China, Fan, Q. 8371
(SYSU); Stewartia micrantha (Chun) Sealy, 4561, Guangdong, China, Fan Q. 8150 (SYSU); Stewartia sichuanensis (S.Z. Yang) J. Li
et Ming, 4816, Sichuan, China, Fan, Q. 8412 (SYSU); Stewartia pteropetiolata W.C. Cheng, 8000, Kunming, China (cultivated), Li
Pan 8000 (ZJU); Stewartia sinii (Wu) Sealy, 4552, Guangxi, China, Fan Q. 8241 (SYSU); Stewartia tonkinensis (Merr.) C.Y. Wu,
4555, Guangdong, China, Fan Q. 8120 (SYSU); Schima argentea E.Pritz. ex Diels, 6661, Sichuan, China, 1992.381B (QA); Schima
sinensis (Hemsl. & E.H.Wilson) Airy Shaw, 6663, Sichuan, China, 1991.339N (QA); Stewartia gemmata S.S.Chien & W.C.Cheng,
3865, Nanjing, Jiangsu, China, 531-34C (AA); Stewartia gemmata, 3481, Mangshan, Hunan, China, Li 3481 (HCHM); Stewar-
tia gemmata, 8137, Kaihua, Zhejiang, China, Li 8137 (ZJU); Stewartia gemmata, 8198, Shangrao, Jiangxi, China, Li 8198 (ZJU);
Stewartia gemmata, 8214, Linan, Zhejiang, China, Li 8214 (ZJU); Stewartia gemmata, 3866, Nanjing, Jiangsu, China, 531-34B
(AA); Stewartia koreana Nakai, 6657, Mt. Chirisan, Korea; 11440A (AA); Stewartia koreana, 1609, Mt. Mudung, Korea; 1269-
83A (AA); Stewartia koreana, 1608, Mt. Chirisan, Korea; 11440B (AA); Stewartia malacodendron L., 6627, Alabama, USA; 2007-
149C (AA); Stewartia malacodendron, 6626, Alabama, USA; 2007-150C (AA); Stewartia malacodendron, 6624, Alabama, USA;
2007-151C (AA); Stewartia malacodendron, 6623, Alabama, USA; 2007-147B (AA); Stewartia malacodendron, 8286, Blount Co.,
Alabama, USA; del Tredici (AA); Stewartia malacodendron, 827, Blount Co., Alabama, USA; del Tredici (AA); Stewartia mala-
codendron, 6629, Virginia, USA; 2007-152C (AA); Stewartia monadelpha Siebold & Zucc., 6087, Yakushima, Japan; 1989.319C
(QA); Stewartia monadelpha, 6651, Japan, 653-74B (AA); Stewartiamonadelpha, 4820, Japan, 653-74A (AA); Stewartiamonadelpha,
6089, Yakushima, Japan, 1989.319D (QA); Stewartia monadelpha, 6659, Yakushima, Japan, 1989.319D (QA); Stewartia ovata
(Cavanilles) Weatherby, 6658, Highlands, North Carolina, USA; 18244C (AA); Stewartia ovata, 1602, Highlands, North Caro-
lina, USA, 18244B (AA); Stewartia ovata, 1601, USA, 18847A (AA); Stewartia ovata, 8282, Chattooga River, South Carolina, USA,
(AA); Stewartia ovata, 8279, Chattooga River, South Carolina, USA, (AA); Stewartia pseudocamellia Maxim., 6625, Honshu, Ja-
pan, 2007-502A (AA); Stewartia pseudocamellia, 6090, Honshu, Japan; 1989.071A (AA); Stewartia pseudocamellia, 6660, Honshu,
Japan, 1989.071A (QA); Stewartia rostrata Spongberg, 6649, Lushan, Jiangxi, China, 249-2005B (AA); Stewartia rostrata, 3863,
Lushan, Jiangxi, China, 769-36A (AA); Stewartia rostrata, 6655, Lushan, Jiangxi, China, 322-2004A (AA); Stewartia rostrata, 6632,
Lushan, Jiangxi, China, 249-2005A (AA); Stewartia rostrata, 6650, Lushan, Jiangxi, China, 327-2004A (AA); Stewartia rubiginosa
H. T. Chang, 8017, Yingde, Guangdong, China, Li 8017 (ZJU); Stewartia rubiginosa, 8023, Ruyuan, Guangdong, China, Li 8023
(ZJU); Stewartia rubiginosa, 8015, Yingde, Guangdong, China, LI 8015 (ZJU); Stewartia serrata Maxim., 6749, Fuji Mountains,
Japan; Saito 01 (TI); Stewartia serrata, 6750, Fuji Mountains, Japan, Saito 02 (TI); Stewartia serrata, 6751, Fuji Mountains, Japan;
Saito 03 (TI); Stewartia serrata, 6752, Fuji Mountains, Japan, Saito 04 (TI); Stewartia serrata, fuji6, Fuji Mountains, Japan, Saito
06 (TI); Stewartia serrata, 6748, Fuji Mountains, Japan, Saito 05 (TI); Stewartia sinensis Rehder & Wilson, 3867, Wudangshan,
Hubei, China, 691-94A (AA); Stewartia sinensis, 8046, Foping, Shangxi, China, Li 8046 (HCHM); Stewartia sinensis, 8049, Foping,
Shangxi, China, Li 8049 (HCHM); Stewartia sinensis, 8053, Yichang, Hubei, China, Li 8053 (ZJU); Stewartia sinensis, 8132,
Badagongshan, Hunan, China, Li 8132 (ZJU); Stewartia sinensis, 6652, Shennongjia, Hubei, China, 383-2001A (AA).
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